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A feature retrieving attractor neural network 
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Theoretical Physics, University o f  Oxford, 1 Keble Rd, Oxford OX1 3NP, UK 
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Abstract. A mean-field analysis is presented of the retrieval behaviour of a modular network 
of binary neumm capable of storiog and retrieving patterns made up of associated fearures. 

1. Introduction 

Ever since Hopfield's watershed paper in which the analogy between memory stor- 
agehetrieval and the groundstates of complex spin-glass type systems was first proposed, 
and the following work by Amit er ai (AGS) [4] in which the theoretical pattem storage limit 
of Hopfield's model was determined, much work has been done in extending this approach 
to models of a more practical and biological nature. One such extension, introduced by 
O'Kane and Treves [SI, considered an architecture involving a system of intemally strongly 
coupled neural networks, or modules, randomly but dilutely interconnected. The original 
study was stimulated by considerations of the anatomy of neocortex [ 11 and of the concept 
of patterns constituted from particular associations of features, the latter being stored in 
individual modules. The original paper of O'Kane and Treves was formulated in terms 
of graded response neurones and was confined to a study of a noiseless dynamics. This 
present paper extends the analysis to binary McCulloch-Pitts neurons with noisy dynam- 
ics. As well as confirming qualitative aspects of the earlier study, such as the existence of 
stable memory-glass states in which only local, but no global retrieval occurs, it permits 
an interesting interpolation between two extremes of statistically homogeneous networks 
discussed earlier: that of full connectivity where the phase transition between retrieval and 
non-retrieval is first order; and that of dilute random connectivity where the transition is 
second order. 

2. The model 

The overall architecture of the model is one consisting of M distinct modules of N neuronal 
units each. A unit can take two states S = i1 and is connected to all N - 1 other units 
within the same module and to L units distributed at random throughout the remaining 
M - 1 modules. The total number of connections to a neuron is therefore C = L + N - 1 
and we denote by y = LfC the fraction of long-range connections. AI1 connections are 
symmetric and governed by Hebbian leaming rules. P pattems are stored on both the 
short- and long-range connections. However, each of these (global network) patterns is 
made up of M features, one per module, each drawn from a repertoire of D features 
stored in that module-see figure 1. We assume that the distribution of e representing each 
feature d within a module m (which would result from some unspecified storage process) 
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is given independently for e k h  unit i ( and d , m )  and 6 = 2 4  with equal probability. 
Note that i = 1,. . . , N; d = 1,. . ., D and m = 1,. . . , M. A global pattem, labelled p 
(with p = 1,. . . , P f ,  is then a random combination (dp.. . . , d,$, . . . , d:]. For simplicity, 
we shall assume that P / D  p is integral, and that features are assigned to patterns by 
randomly partitioning the P pattems in each module into D groups of p elements (there 
are P ! / ( F ! ) ~  possible such assignments). The system is taken to obey random sequential 
dynamics 
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where p is the usual measure of synaptic gaidnoise and the synaptic efficacies take the 
form 

J P C M X  
I Q C M Z  
K P B L Y  
I R A L Z .  
K R B N X  
I Q A N Y  

Variable ci, j4 = 1.0 depending upon whether or not there is a link between neurone im in 
module m and j. in module n. We further take the specific cim to be chosen randomly 
with a probability c (= L / N ( M  - l)), (1 - c) mat cim,. = 1,0 and concentrate on the limit 
of small c and large M. 
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Figure 1. Schematic represenration of the archifeehire 
of the network (top, only the connections relative to one 
module are drawn for clariryy and of he corresponding 
memory organization (middle). Full utrves represent short- 
range c o d o n s  while the broken curyes denote long-range 
connections. The table at the bottom gives an example of how 
feawnS could unnbine into pattems when fi = 2. Boldface 
letters denote one particular pattern being retrieved. 

3. The free energy 

The attractor macrostates correspond to the asymptotic distribution of microstates generated 
by (1). They are given by the appropriate ergodicity-breaking thermodynamic equilibrium 
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states of the Hamiltonian 

and are obtainable from a minimization of the corresponding free energy. In the standard 
manner [3], we take a statistically relevant average over the specific choices of patterns and 
connectivities, using a replica procedure to perform the appropriate quenched averages 
[91. There are now three relevant macroscopic order parameters characterizing the 
thermodynamic states 

(i) the overlap with feature m in module d 

(ii) the overlap of the whole system with pattern p 

(iii) the Edwards-Anderson ‘spin-glass’ order parameter 

where (.) denotes a thermodynamic average and (JF an average over the pattern choice and 
the connectivity. Assuming a single retrieved pattern, integrating out the order parameters 
pertaining to unretrieved patterns, dropping terms of higher order in c, and taking the 
replica-symmetric ansatz, we obtain as the free energy per neuron in the thermodynamic 
limit ( N  --f 00 L + 00, y fixed) 

where 

and 

d’ labels the retrieved feature in each module and p’ the retrieved global pattem and 
CY = P/C. Equations characterizing the properties of the attractor states as a function 
of the order parameters are given by extremizing f. 
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3.1. The saddle-point equations 
The macroscopic properties of the model are therefore described by the following coupled 
saddle-point equations. 
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9 = / Dz tanh2B(ymP' + p(1- y)mt  + 2 6 )  

These describe the four distinct phases which the system may assume. One is the 
'paramagnetic' non-mtrieval phase with m$ = mp' = 9 = 0. The others are described 
below. 

3.2. Retrieval phase 
If there is local and global retrieval, m$ = mp' = m, and the equations take the form: 

g, = m - Dz tanhB((y +p(I - y ) )m  + z 6 )  = 0 s 
s g,, = q -  D z t a n h * B ( ( y + p ( l - y ) ) m f z ~ ) = O .  (11) 

As these equations are only kalytically soluble in a few limited cases, a numerical 
method was used. This involved using a simplex descent algorithm to find the maximum 
value of  a having a zero-valued, but finite m minimum to the function 

b ,  9 , a ,  p, Y ,  B )  = g i  +g,'. (12) 
This method allowed us to solve for a range of values of p and y ,  and the resulting 

a - T phase diagrams are given in figures 2(a) and 2(h). Two interesting limits exist. First, 
when y = 0, the equations become analogous to the fully connected Hopfield model under 
the mapping ~ H ~ F  = w / p  and B H ~ ~ F  = Bp, and so the retrieval transition is first order. 
Second, when y = 1, equation (1 1) maps directly onto the SK model whose analogous 
ferromagnetic-to-paramagnetic phase transition is second order. At some intermediate stage 
the system must pass through a point at which the transition changes its order. 

This point can be determined as follows. To begin with, note that at cu, the condition 
for a second-order transition is 

which leads lo 

s T(y +@(I - y))-' = Dz sech*B(zfi) = 1 -qm4.  

Consequently a plot of q against T on the retrieval/non-retrieval boundary-see figure 3- 
should be linear in the second-order transition regime. To determine the tricritical point at 
which a second-order transition becomes first order also requires that at a, 
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Figure 2. a - T phase diagrams for (0) p = 1 and (b) p = 2 The lines are labelled 
mmponding to the following key: A, B. C, D denote y = 0.4, f, 1 respectively: while 1,2,3 
denote the rehievalhwetrieval phase boundary, the pa"gnWspin-glass phase boundary 
and lhe de Almeida-Thouless line, respectively. A solid line and a dashed line denote the first- 
and semnd-order phase m i t i o n  nspectively. A square npresents the tricritical point 
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Combining (13) and (15). we arrive at 
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which describes a point along the phase boundaries marked by squares in figures 2 and 3. 
The value of a! at the triple point was determined - by expanding in m and q about T to 

give 

In the large p regime, certain terms may be neglected and the equations become 
equivalent to those of the AGS model under the mappings 

= A 1  - Y)UAGS(T) and B = BAGS/P(~ - Y )  (18) 

showing that the critical capacity increases with p ,  but only with a constant of proportionality 
aymptotically equal to the fraction of short-range connections. This signifies the fact that 
when many features are present, it is the local connections which dominate. 

When T -+ 0, 9 + 1 and we may easily calculate the full /I dependence of a!, since 
the coupled equations simplify into a single-dimensional self-consistent equation in y 

(19) 
n/N - Y)(erfY)2 + Y -- - (erfyl2 

&yz (Y + ~ ( 1  - Y ) ) ~  ((Y + ~ ( 1 -  r))J;?erfy - - Y)Yexp(-y2))2 

where y is defined as follows 

The critical value a!c is the highest value of a! for which there is a non-zero y solution to 
this equation. The /I &pendency of (Y for T = 0 is plotted in figure 4 for different values 
of y .  As in the finite-temperature case, we also find that the transition switches from being 
second order to first order with increasing p ,  provided y # 1. As in the other figures 
the tricritical points are marked by squares. In the limit of y = 1 the capacity equation 
becomes equivalent to that for the model proposed by Demda et a1 (Mz) 161. However, 
note that the DGZ model has asymmetric connections so that despite the equivalence of the 
capacity equations, the models are still fundamentally different-a point which has already 
been discussed by Watkin and Shemngton [lo]. 

3.3. Spin-glass phase 

In the spin-glass phase, md = mp = 0, hut q # 0. Investigation of the form of the function 
g, showed that the transition from a spin-glass state to a retrieval state is always second 
order. Hence, one may perform an expansion in 9 to give the quartic in Tg 

T,4-~2p(1-Y~1Tg3-[a!y+~ll(l-y)--/L2(1-Y~~lTg2+~2pYa!(l-Y)1T~--LLI.1~~l-y~~y = 0. 

(21) 

It is the largest root which corresponds to the relevant solution. It interpolates between the 
y = 0 solution, T, = 1.1 + @jT, which has been shown in section 3.2 to map directly onto 
the fully connected Hopfield model, and the y = 1 case which has a solution Tg = ,hi. 
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Figure 3. Plot of spin-glass order parameter against temperatnre for (U) LL = 1 and (b) p = 2 
for the different values of y labelling each line. A solid line and a dashed line denote the 
first- and secondader phase transition respectively. The tricritid point as prediaed by (t6) is 
denoted by a square. 
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Flgure 4. 01 - @ phase d i a p s  for zero temperahue. The labelling is: A,B,C,D denote 
y = 0, f ,  2.1 respenively; while 1.2 denote the retrievaynpreDievlll phase boundary and the 
memory-glass/no memory phases boundary respectively. A sguare marks the hiclitid point. 

3.4. Memory-glass phase 

A memory-glass phase is one in which there is only local and no global retrieval, i.e. 
m = md' m - 0(1) but mp' = 0; and its phase boundaries can be found by solving 

m = J Dz tanhp(p(1- y ) m  + z f i )  

q = 1 Dz tanh' pb(1- y)m + z f i )  

to give figure 5. As in 3.3, when T = 0 the equations simplify to a onedimensional 
equation, this time of the form 

As p tends to infinity, the memory-glass capacity equation becomes equivalent to the 
ntrieval-state equation with p >> 1, which is to be expected since the capacity of a network 
with dominant local ntrieval should approach one which has local but no global retrieval. 

3.5. De Almeida-Thouless line 
So far, in this paper we have assumed replica symmetry in the q and r order parameters. 
However, it has been noted [2] that this may result in certain regions wherein the free energy 
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Figure 5. a - T phase diagram for the memory-glass (MO) phase. Fach line is labelled wilh 
the corresponding value of y .  

is unstable under small fluctuations in 4 and r about the replica-symmetric saddle-point 
Specifically, the stability test determining this is the condition for the eigenvalues of the 
Hessian matrix to become negative. The line across which this occurs is given by 

9 1 Dz xch4 P((y + p(1- y))m + z f i )  = 1 (24) 
4 

This de Ahneida-Thouless line 121 has been calculated for different values of p and y and 
is also displayed in figure 2. In the region of T, CY small these lines all begin at the origin 
and move away from the zero-temperature axis exponentially slowly. They then begin to 
rise until they intersect the retrieval boundary: Below the line, replica symmetry must be 
broken and the retrieval boundary is therefore incorrect 

4. Discussion 

In terms of its performance as a feature storing/retrieving system, this m e 1  displays some 
interesting properties. To begin with, it is found that as the number of shared feature+@- 
becomes large, the number of global pattern configumtions which can be retrieved p w s  
asymptotically proportionally to pN. Although good, there is a possible drawback since 
the memory-glass state becomes asymptotically as persistent as the retrieval state as @ 

increases, although we anticipate that the basins of attraction of these states are smaller than 
those of the true retrieval states. Unfortunately, the requirement that M be large, as well 
as N -+ CO, means that the system is too large to attempt to carry out reliable simulations 
to test this. One way to avoid falling into the memory-glass state would be to increase 
the noise in the dynamics, i.e. the temperature T, since full retrieval states are stable until 
Tc = y+&(l  - y ) ,  but memoty-glass states have a lower critical temperature p(1 - y ) .  For 
y greater than - 0.4, this can be done without any decrease in the pattern storage capacity. 

This model is closely related to that studied by Krey and Pceppel [7], who investigated 
a network segmented into units each storing separate pattems (‘letters’). They too impose a 
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tendency for the letters to become organized into preferred ‘words’. Despite this, the system 
possesses stable states consisting of non-preferred words-equivalent to our memory-glass 
states. However, they do not investigate the effects of dilution. 

It is interesting to compare the behaviour of our model when p = 1, with that of the 
arbitrarily dilute AGS (AmitCu~eundSompolinsky) model [5] whose low-temperature 
behaviour is similar but whose critical capacity falls to zero at Tc. The difference can be 
understood from signal-to-noise considerations. In the diluted AGS model, the signal comes 
from as many units as the ‘fully connected’ noise. However, in the modular model, the 
signal comes from N + L units whilst the ‘fully connected’ noise comes from only N units. 
The signal-to-noise ratio is, therefore, greater in this model, and so it better withstands the 
increase in noise to the system resulting from an increase in temperature. 

An interesting, but unknown feature of this model, is how its replica-symmetry-breaking 
scheme interpolates between the known y = 1 limit where the full Parisi Ansatz is the 
correct solution, to they = 0 AGS model whose replica-symmetry-broken solution is difficult 
to obtain. It has been conjectured by Canning and Naef [5] that the AT line always intersects 
the retrieval phase boundary at the point where the latter’s gradient becomes infinit-which 
it certainly seems to do in this model-and that, furthermore, the full replica-symmetry- 
broken retrieval phase l i e  may be found by simply drawing a line vertically from this 
intersection to the zero-temperature axis. 
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